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Abstract 
 

In 1985, Matsumoto. M.,[6] has discussed the properties of special hypersurface of Rander’s space with 
𝑏(𝑥) = 𝜕 𝑏 being the gradient of a scalar function 𝑏(𝑥) . He had considered a hypersurface which is 
given by 𝑏(𝑥) = constant. In this paper we have considered the hypersurface of a generalized (𝛼, 𝛽)- 
metric space with metric given by (1.1) which is given by the same equation 𝑏(𝑥) = constant. The 
condition under which this hypersurface be a hypersurface of the first, second and third kind have also 
been obtained. 

Keywords: (𝛼, 𝛽)- metric, hypersurface, angular metric, the reciprocal tensor, covariant differentiation, 
h- and v- covariant derivatives. 

 

1. Introduction  

The notion of (𝛼, 𝛽)- metric was introduced in 1972 by Matsumoto. M., [5 & 6]. On the basis of 
Rander’s metric which was attracted physicist’s attention [3, 4]. A Finsler metric 𝐿 (𝑥, 𝑦) in a differential 
manifold 𝑀 is called (𝛼, 𝛽)- metric, if the 𝐿 is a (1) p-homogenous in the variables  𝛼 and 𝛽,  

where   𝛼 = ට𝑎 (𝑥) 𝑦 𝑦  and 𝛽 =  𝑏 (𝑥) 𝑦 is one form of degree one. 

We have a number of (𝛼, 𝛽)- metric such as Rander’s metric, Kropina metric, generalized Kropina 
metric, Matsumoto metric as examples. With respect to these metrics, several authors ([4], [5], [6],[7], 
[10], [11], [12]) where we obtained important result and theorems. In this paper, we take the (𝛼, 𝛽)- 
metric given by,  

  𝐿 = 𝐶ଵ 𝛼 + 𝐶ଶ 𝛼ିଵ 𝛽 + 𝐶ଷ 𝛼 𝛽ିଵ + 𝐶ସ 𝛽                            (1.1) 

where 𝐶ଵ, 𝐶ଶ, 𝐶ଷ and  𝐶ସ are constants and n is a positive integer. 

If   𝐶ଵ =  𝐶ସ = 1   ,  𝐶ଶ =  𝐶ଷ = 0  and 𝑛 = 1,  then we get Rander’s metric  

  𝐿 =  𝛼 + 𝛽  [11] 

In this way by giving different values to 𝐶ଵ, 𝐶ଶ, 𝐶ଷ 𝐶ସ and n we get different type of  (𝛼, 𝛽)- metric 
discussed by several authors [8], [9] etc earlier. Therefore, the metric (1.1) has become too much 
interesting because it is the generalization of several (𝛼, 𝛽)- metric. Therefore, we say this metric as 
generalized (𝛼, 𝛽)- metric and space generalized (𝛼, 𝛽)- metric. 

In 1985, Matsumoto. M.,[6] has discussed the properties of special hypersurface of Rander’s space 
with 𝑏(𝑥) = 𝜕  𝑏 being the gradient of a scalar function 𝑏(𝑥) . He had considered a hypersurface 
which is given by 𝑏(𝑥) = constant. 
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In this paper we have considered the hypersurface of a generalized (𝛼, 𝛽)- metric space with metric 
given by (1.1) which is given by the same equation 𝑏(𝑥) = constant. 

The conditions under which this hypersurface be a hypersurface of the first, second and third kinds 
have also been obtained.   

 

2. Preliminaries. 

Let 𝐹 = (𝑀, 𝐿) be an n-dimensional Finsler spaces with (𝛼, 𝛽) given by (1.1) where 

 𝛼 = ට𝑎  (𝑥) 𝑦 𝑦 is a Riemannian metric in 𝑀 and 𝛽 =  𝑏 (𝑥) 𝑦 is a differential one form in 𝑀. 

The derivatives of 𝐿 = (𝛼, 𝛽) with respect to and are given by 

 𝐿ఈ = 𝐿ଵି ቂ𝐶ଵ 𝛼
ିଵ  +

మ (ିଵ)


𝛼ିଶ 𝛽 +

య


 𝛽ିଵቃ        (2.1) 

 𝐿ఉ = 𝐿ଵି ቂ
మ ఈషభ


+

య (ିଵ)


𝛽ିଶ 𝛼 + 𝐶ସ 𝛽ିଵቃ 

 𝐿ఈఈ = 𝐿ଵି ቂ𝐶ଵ(𝑛 − 1) 𝛼ିଶ +
మ (ିଵ) (ିଶ) ఈషయ ఉ


ቃ + (1 − 𝑛)𝐿ିଵ𝐿ఈ

ଶ

      
     (2.2) 

 𝐿ఉఉ = 𝐿ଵି ቂ
య (ିଵ) (ିଶ) ఈ ఉషయ


+ 𝐶ସ(𝑛 − 1) 𝛽ିଶቃ + (1 − 𝑛) 𝐿ିଵ 𝐿ఉ

ଶ

      
 

 𝐿ఈఉ = 𝐿ଵି ቂ
మ (ିଵ) ఈషమ


+

య (ିଵ) ఉషమ


ቃ + (1 − 𝑛) 𝐿ିଵ 𝐿ఈ 𝐿ఉ

      
 

Where 

 𝐿ఈ =
డ

డఈ
 ,  𝐿ఉ =

డ

డఉ
 ,  𝐿ఈఈ =

డഀ

డఈ
  

 𝐿ఉఉ =
డഁ

డఉ
    and   𝐿ఈఉ =

డഀ

డఉ
 

The normalized element of support 𝑙 = 𝜕ప 
̇ 𝐿 is given by 

 𝑙 = 𝐿ఈ  𝑦 𝛼
ିଵ + 𝐿ఉ 𝑏 

 𝑙 = 𝐿ଵି ቂ𝐶ଵ 𝛼ିଵ  +
మ (ିଵ)


𝛼ିଶ 𝛽 +

య


 𝛽ିଵቃ 𝑦  𝛼ିଵ 

         +𝐿ଵି ቂ
మ ఈషభ


+

య (ିଵ)


𝛽ିଶ 𝛼 + 𝐶ସ 𝛽ିଵቃ 𝑏     (2.3) 

Where 𝑦 = 𝑎𝑦, the angular metric tensor ℎ = 𝐿 𝜕ప̇ 𝜕ఫ ̇ 𝐿 is given by 

 ℎೕ
= 𝑃 𝑎 + 𝑞 𝑏 𝑏 + 𝑞ିଵ ൫𝑏 𝑦 + 𝑏 𝑦൯ + 𝑃 ଶ 𝑦 𝑦     (2.4) 

Where  

 𝑃 =
ഀ

ఈ
  = 𝛼ିଵ 𝐿ଶି ቂ𝐶ଵ 𝛼

ିଵ  +
మ (ିଵ)


𝛼ିଶ 𝛽 +

య


 𝛽ିଵቃ 

 

 𝑞 = 𝐿𝐿ఉఉ  = 𝐿ଶି ቂ
య (ିଵ) (ିଶ) ఈ ఉషయ


+ 𝐶ସ(𝑛 − 1) 𝛽ିଶቃ + (1 − 𝑛) 𝐿ఉ

ଶ

      
 

            (2.5) 
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𝑞ିଵ =
ഀഁ

ఈ
  = 𝛼ିଵ ቂ 𝐿ଶି ቄ

మ (ିଵ) ఈషమ


+

య (ିଵ) ఉషమ


ቅ + (1 − 𝑛) 𝐿ఈ  𝐿ఉቃ           

 

𝑃 ଶ = 
 

ఈమ ቀ𝐿ఈఈ −
ഀ

ఈ
 ቁ = 

 

ఈమ  ൦
𝐿ଵି  ቄ   ቀ𝐶ଵ(𝑛 − 1) 𝛼ିଶ +

మ (ିଵ) (ିଶ) ఈషయ ఉ


ቁ

      
ቅ + (1 − 𝑛)𝐿ିଵ𝐿ఈ

ଶ  

−
భష ቀభ ఈ

షభ ା
మ (షభ)


ఈషమ ఉା

య


 ఉషభቁ

ఈ

൪ 

The fundamental tensor 𝑔 =
ଵ

ଶ
𝜕ప̇ 𝜕ఫ ̇ 𝐿ଶ  is given by 

 𝑔 = 𝑃 𝑎 + 𝑃
⋇ 𝑏 𝑏 + 𝑃 ଵ

⋇  ൫𝑏 𝑦 + 𝑏 𝑦൯ + 𝑞ିଶ
⋇  𝑦 𝑦     (2.6) 

 

Where 

 𝑃
⋇ = 𝑞 + 𝐿ఉ

ଶ  = 𝐿ଶି ቂ
య (ିଵ) (ିଶ) ఈ ఉషయ


+ 𝐶ସ(𝑛 − 1) 𝛽ିଶቃ + (1 − 𝑛) 𝐿ఉ

ଶ

      
+ 𝐿ఉ

ଶ    

𝑃 ଵ
⋇ = 𝑞ିଵ +

ഀ ഁ

ఈ
 = 𝛼ିଵ ቂ 𝐿ଶି ቄ

మ (ିଵ) ఈషమ


+

య (ିଵ) ఉషమ


ቅ + (1 − 𝑛) 𝐿ఈ  𝐿ఉቃ + 

ഀ ഁ

ఈ
  (2.7) 

𝑞ିଶ
⋇ = 𝑃 ଶ + ቀ

ഀ

ఈ
ቁ

ଶ
= 

 

ఈమ ൦
𝐿ଵି  ቄ   ቀ𝐶ଵ(𝑛 − 1) 𝛼ିଶ +

మ (ିଵ) (ିଶ) ఈషయ ఉ


ቁ

      
ቅ + (1 − 𝑛)𝐿ିଵ𝐿ఈ

ଶ  

−
భష  ቀభ ఈ

షభ ା
మ (షభ)


ఈషమ ఉା

య


 ఉషభቁ

ఈ

൪  

+ ൬
𝐿ఈ

𝛼
൰

ଶ

 

Moreover, the reciprocal tensor 𝑔  of 𝑔  is given by [5] 

 𝑔 =
ೕ

బ
 − 𝑆 𝑏  𝑏 − 𝑆ଵ൫𝑏 𝑦 + 𝑏 𝑦൯ − 𝑆ଶ 𝑦 𝑦     (2.8) 

Where 

 𝑏 = 𝑎𝑏 

 𝑆 =  
బ బ

⋇ା ఈమ ൣబ  
⋇ షమ

⋇  ି (షభ
⋇ )మ൧

బቂబ ൫బା బ
⋇ మା ଶ షభ

⋇  ఉ ା షమ
⋇  ఈమ൯ା(ఈమ మି ఉమ)ቀିషభ

⋇ మ
ା బ

⋇ షమ
⋇ ቁቃ

 

 J = 𝑃 ൣ 𝑃 (𝑃 + 𝑃
⋇ 𝑏ଶ + 2𝑃 ଵ

⋇  𝛽 + 𝑞ିଶ
⋇  𝛼ଶ) + (𝛼ଶ𝑏ଶ − 𝛽ଶ)൫−𝑃 ଵ

⋇ ଶ
+ 𝑃

⋇ 𝑞ିଶ
⋇ ൯൧ 

 𝑆 =  
బ బ

⋇ା ఈమൣబ  
⋇ షమ

⋇ ି (షభ
⋇ )మ൧


 

 𝑆ଵ =
షభ

⋇  బା ఉ ൣ(షభ
⋇ )మିబ 

⋇ షమ
⋇ ൧


        (2.9) 

 𝑆ଶ =  
ൣబ

⋇ షమ
⋇ ାమ {బ

⋇ షమ
⋇  ି (షభ

⋇ )మ}൧


 

The h v-torsion tensor 𝑐 =
ଵ

ଶ
 𝜕̇  𝑔 is given by [5] 

 2 𝑃 𝑐 =  𝑃 ଵ 
⋇ ൫ℎ 𝑚 + ℎ  𝑚 + ℎ 𝑚൯ + 𝑟ଵ 𝑚 𝑚 𝑚   (2.10) 

Where 
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 𝑟ଵ = 𝑃
డ బ

⋇  

డఉ
− 3𝑃 ଵ 

⋇ 𝑞  ,    𝑚 =  𝑏 − 𝛼ଶ 𝛽 𝑦    (2.11) 

It is noted that the covariant vector 𝑚 is a non-vanishing one, and is orthogonal to the element of 
support 𝑦.  

Let { 𝑗      𝑘}  be the components of Christoffel’s symbol of the associated Riemannian space 𝑅 and ∇ 
be covariant differentiation with respect to 𝑥 relative to this Christoffel’s symbol, we shall use the 
following tensors. 

   2𝐸 =  𝑏 + 𝑏 ,  2 𝐹 = 𝑏 − 𝑏   (2.12)  

Where   𝑏 = ∇𝑏 

If we donate the Cartan’s connection C Γ as   ൫Γ
∗ , Γ

∗, 𝑐
൯ then the difference tensor 

 D
∗ = Γ

∗ −  { 𝑗   
𝑖
   𝑘} of (𝛼, 𝛽) − 𝑚𝑒𝑡𝑟𝑖𝑐 space is given by [6] 

 

D
 =  𝐵  𝐸 + 𝐹 

 𝐵 + 𝐹
 𝐵 + 𝐵

 𝑏 + 𝐵
  𝑏 − 𝑏 𝑔 𝐵 − 𝑐 

 𝐴
 − 𝑐 

 𝐴
        (2.13) 

           +𝑐  𝐴௦
𝑔௦ + ൫𝑐 

 𝑐௦
 + 𝑐 

 𝑐௦
 − 𝑐

 𝑐௦
 ൯ 

Where  

  𝐵 = 𝑃
⋇ 𝑏 + 𝑃 ଵ 

⋇ 𝑦 ,  𝐵 = 𝑔  𝐵  ,   𝐹
 = 𝑔  𝐹 

  𝐵 = ቄ
షభ 

⋇

బ
 ൫𝑎 − 𝛼ିଶ 𝑦  𝑦൯ +

డ బ
⋇

డఉ
 𝑚  𝑚ቅ /2 

   

𝐵
 = 𝑔  𝐵 ,              (2.14) 

   

𝐴
 = 𝐵

 𝐸 + 𝐵 𝐸 + 𝐵 𝐹
 + 𝐵 𝐹

 , 

  𝜆 = 𝐵 𝐸 + 2𝐵 𝐹
 ,   𝐵 = 𝐵 𝑦

 , 

 

Here and in the following we denote 0 as contraction with 𝑦 except for the quantities  𝑃
⋇ , 𝑞 and 𝑐. 

 

3. Induced Cartan Connection. 

Let 𝐹ିଵ be a hypersurface of 𝐹, given by the equation 𝑥  =  𝑥  (𝑢ఈ)  suppose that the matric of the 

projection factor 𝑥ఈ
  =  

డ௫

డ௨ഀ  is of a rank (𝑛 − 1), the element of support 𝑦 of 𝐹 is to  be taken 

tangential to 𝐹ିଵ i.e.  

  𝑦 =  𝑥ఈ
  (𝑢) 𝑣ఈ .          (3.1) 

Thus 𝑣ఈ is the element of support of 𝐹ିଵ at the point 𝑢ఈ. The metric tensor 𝑔ఈఉ and the hv-torsion 
tensor 𝐶ఈఉఊ of 𝐹ିଵ is defined by  
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  𝑔ఈఉ =  𝑔  𝑋ఈ
  𝑋ఉ

  ,     𝐶ఈఉఊ  =  𝐶  𝑋ఈ
  𝑋ఉ


 𝑋ఊ

  (3.2) 

at each point 𝑢ఈ  of  𝐹ିଵ , a unit normal vector 𝑁(𝑢, 𝑣) is defined by  

  𝑔  =  {𝑥 (𝑢), 𝑦 (𝑢, 𝑣) } 𝑋ఈ
  𝑁  = 0  ,    𝑔  {𝑥 (𝑢), 𝑦 (𝑢, 𝑣)} 𝑁  𝑁  = 1 (3.3) 

As for the angular metric tensor ℎ   we have  

  ℎఈఉ  =  ℎ 𝑋ఈ
  𝑋ఉ


 ,  ℎ  𝑋ఈ

  𝑁  = 0 ,  ℎ  𝑁 𝑁  = 1  (3.4) 

If (𝑋
ఈ  , 𝑁) denotes the inverse of ൫𝐵ఈ

  , 𝑁൯, then we have  

  𝑋
ఈ  =  𝑔ఈఉ  𝑔  𝐵ఉ

  ,  𝑋ఈ
  𝑋

ఉ
 =  𝛿ఈ

ఉ ,   𝑋
ఈ  𝑁 = 0 ,  (3.5) 

  𝑋ఈ
  𝑛 = 0 ,   𝑁 =  𝑔 𝑁   

  𝑋ఈ
  𝛽

ఈ +  𝑁   𝑁 = 𝛿
 , 

The induced connection  I C Γ = ൫Γఉఊ
   ఈ , 𝐺ఉ

   ఈ, 𝐶ఉఊ
   ఈ൯ of 𝐹ିଵ induced from the Cartan’s connection  

C Γ =  ൫Γ
∗ , Γ

∗, 𝐶
൯ is given by [ 6 ] 

  Γ  ఉఊ
∗ఈ =  𝑋

ఈ  ቀ 𝑋ఉఊ 
 + Γ

∗ 𝑋ఉ

  𝑋ఊ

  ቁ + 𝑀ఉ
ఈ  𝐻ఊ       (3.6) 

  𝐺 ఉ
ఈ =  𝑋

ఈ  ( 𝑋ఉ 
 + Γ

∗ + 𝑋ఉ

 )        (3.7) 

  𝐶ఉఊ
 ఈ =  𝑋

ఈ  𝐶
 𝑋ఉ 


 𝑋ఊ

          (3.8) 

Where 

  𝑀ఉఊ  =  𝑁  𝐶
  𝑋ఉ 


 𝑋ఊ

 ,  𝑀 ఉ
ఈ =  𝑔ఈఊ 𝑀ఉఊ     (3.9) 

 𝐻ఉ =  𝑁  (  𝑋ఉ 
 + Γ

∗  𝑋ఉ 


 )                  (3.10) 

and  𝑋ఉఊ 
 =  

డഁ


డ௨ം ,     𝑋ఉ 
 =  𝑋ఈఉ 

 𝑣ఈ ,  

the quantities 𝑀ఉఊ and 𝐻ఉ are called second fundamental v-tensor and normal curvature vector 
respectively  [ 6 ]. 

The second fundamental v-tensor  𝐻ఉఊ is defined as [  6 ] 

 𝐻ఉఊ =  𝑁  (  𝑋 ఉఊ 
 +  Γ

∗ 𝑋 ఉ 


 𝑋ఊ
 ) +  𝑀ఉ 𝐻ఊ             (3.11) 

Where  

 𝑀ఉ =  𝑁  𝐶
  𝑋ఉ 


 𝑁                (3.12) 

The relative h- and v-covariant derivatives of projection factor  𝑋ఈ 
  with respect to I C Γ are given by  

 𝑋ఈ|ఉ 
 =  𝐻ఈఉ   𝑁 ,  𝑋ఈ/ఉ 

 =  𝑀ఈఉ  𝑁
            (3.13) 

The equation (3.11) shows that h is generally not symmetric and  

  𝐻ఉఊ −  𝐻ఊఉ =  𝑀ఉ 𝐻ఊ − 𝑀ఊ 𝐻ఉ .              (3.14) 
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Furthermore (3.10), (3.11) and (3.12) yield  

  𝐻ఊ =  𝐻ఊ ,   𝐻ఊ =  𝐻ఊ +  𝑀ఊ 𝐻 ,              (3.15) 

We quote the following Lemma which is due to Matsumoto [6] 

Lemma (3.1): The normal curvature ℎ = 𝐻ఉ  𝑣ఉ vanishes if and only if the normal curvature vector 
𝐻ఉ vanishes. 

The hyperplanes of first, second and third kinds are defined [  6 ] we only quote the following. 

Lemma (3.2): A hypersurface 𝐹ିଵ is a hyperplane of the first kind if and only if 𝐻ఈ = 0 . 

Lemma (3.3): A hypersurface 𝐹ିଵ is a hyperplane of the third kind with respect to the connection 
C Γ if and only if 𝐻ఈ = 0 and 𝐻ఈఉ = 0. 

Lemma (3.4): A hypersurface 𝐹ିଵ is a hyperplane of the third kind with respect to the connection 
C Γ if and only if 𝐻ఈ = 0 , 𝑀ఈఉ = 𝐻ఈఉ = 0. 

 

4. The hypersurface  𝑭𝒏ି𝟏 (c)  

Let us consider a special (𝛼, 𝛽)-metric (1.1) with a gradient 𝑏(𝑥) = 𝜕𝑏 for a scalar function 𝑏(𝑥) and 
consider a hypersurface 𝐹ିଵ(𝑐)  which is given by the equation 𝑏(𝑥) = 𝑐(constant).   

From the parametric equation 𝑥 = 𝑥  (𝑢ఈ) of 𝐹ିଵ(𝑐),  we get 
డ(௫(௨))

డ௨ഀ  = 0 =𝑏𝑥ఈ
  , so that 𝑏(𝑥) are 

regarded as covariant components of a normal vector field of  𝐹ିଵ(𝑐). 

Therefore along the 𝐹ିଵ(𝑐) we have  

 𝑏𝑥ఈ
 = 0  ,  𝑏𝑦

 = 0       (4.1) 

In general the induced metric 𝐿(𝑢, 𝑣) from the metric (1.1) is given by  

𝐿(𝑢, 𝑣) =  𝑐ଵ ቄ𝑎൫𝑥(𝑢)൯ 𝑋ఈ
  𝑋ఉ


 𝑣ఈ 𝑣ఉቅ

/ଶ
   

therefore the induced metric of 𝐹ିଵ(𝑐) becomes 

 𝐿(𝑢, 𝑣) =  ට𝑐ଵ𝑎ఈఉ(𝑢)𝑣ఈ𝑣ఉ ,    𝑎ఈఉ = 𝑎൫𝑥(𝑢)൯ 𝑋ఈ
  𝑋ఉ

    (4.2) 

Which is a Riemannian metric, at the point of 𝐹ିଵ(𝑐) from (2.5), (2.7) and (2.9) 

we have 

 𝑃 = 𝐶ଵ
ଶ/ ,          𝑞 = 

(ଵି) భ
మ(భష)/

 మ
మ

మ  ,  𝑞ିଵ = 0 , 

 𝑃 ଶ =  −𝐶ଵ
ଶ/

 𝛼ିଶ,         𝑃
⋇ = 

(ଶି) భ
మ(భష)/ 

 మ
మ

మ   , 𝑃 ଵ
⋇ =  

భ
(మష)/)

 మ ఈషభ


 

 𝑞ିଶ
⋇ = 0  ,  

J = 
భ

ቀ
ల


షమቁ

మ
[𝐶ଵ

ଶ 𝑛ଶ + (1 − 𝑛) 𝐶ଶ
ଶ 𝑏ଶ] 
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   𝑆 =
(ଵି) మ

మ

భ
మ/

 ൣభ
మ మା(ଵି) మ

మ మ൧
      (4.3) 

   𝑆ଵ =
భ  మ 

ఈ భ
మ/

 ൣభ
మ మା(ଵି) మ

మ మ൧
 

   𝑆ଶ =  −
మ  మ

మ

ఈమ  భ
మ/

 ൣభ
మ మା(ଵି) మ

మ మ൧
 

Therefore from (2.8) we get  

 𝑔 =
ೕ

భ
మ/  – 

మ
మ (ଵି)

భ
మ/

 ൣభ
మ మା(ଵି)మ

మమ൧
𝑏  𝑏 −

భ మ  

ఈ భ
మ/ 

 ൣభ
మ మା(ଵି) మ

మ మ൧
 ൫𝑏𝑦 + 𝑏𝑦൯  (4.4) 

  +
మ మ

మ

ఈమ భ
మ/

 ൣభ
మ మା(ଵି) మ

మ మ൧
 𝑦  𝑦 

Thus along 𝐹ିଵ (4. 1) and (4.4) lead to  

 𝑔𝑏𝑏 =
మ భ

మ మ

భ
మ/ 

 ൣభ
మ మ ା(ଵି) మ

మమ൧
        therefore we get  

 𝑏 (𝑥 (𝑢)) =  ඨ  
మ భ

మ మ

భ
మ/ 

 ൣభ
మ మ ା(ଵି) మ

మమ൧
 𝑁 ,          𝑏ଶ = 𝑎𝑏 𝑏   (4.5) 

Again from (4.4) and (4.5) we get  

 𝑏 =  𝑎𝑏 =  ඨ
మభ

మ/ 
ൣభ

మ మ ା(ଵି) మ
మ మ൧ 

భ
మ మ     𝑁  + 

మ 
మ

ఈ  భ
  𝑦     (4.6) 

Hence we have the following, 

Theorem 4.2 : Let 𝑭𝒏 be a Finsler space with (𝜶, 𝜷)- metric (1.1) and 𝒃𝒊(𝒙) = 𝝏𝒊𝒃 (𝒙). Let 
𝑭𝒏ି𝟏(𝒄) be a hypersurface of 𝑭𝒏 given by 𝒃 (𝒙) = 𝒄 (constant) suppose the Riemannian metric 
𝒂𝒊𝒋(𝒙) 𝜹 𝒙𝒊 𝜹 𝒙𝒋  be positive definite and 𝒃𝒊 be non-zero field then the induced metric an 𝑭𝒏ି𝟏(𝒄) 
is a Riemannian metric given by (4.2) and relation (4.5) and (4.6) hold. 

Along 𝐹ିଵ(𝑐), the angular metric tensor and metric tensor are given by  

 

 ℎ = 𝐶ଵ
ଶ/ 

𝑎 −  𝐶ଵ

మ

 𝛼ିଶ 𝑦  𝑦 +
(ଵି) భ

మ(భష)
  మ

మ

మ  𝑏 𝑏     (4.7) 

 𝑔 = 𝐶ଵ
ଶ/ 

𝑎 + 
(ଶି) భ

మ(భష)
  మ

మ

మ  𝑏 𝑏 +
భ

మష
  మ  ఈ

షభ 


൫𝑏  𝑦 +  𝑏 𝑦൯   (4.8) 

From (4.1), (4.7) and (3.4) it follows that if ℎఈఉ
() denote the angular metric tensor of 

Riemannian metric 𝑎(𝑥) then along 𝐹ିଵ(𝑐),  ℎఈఉ = 𝐶ଵ ଶ/  ℎఈఉ
() . From (2.7) we get 

డబ
⋇

డఉ
= 0 thus 

along 𝐹ିଵ(𝑐), (2.11) and (4.3) give 

 𝑟ଵ =
భ

(రషయ)/
 ఈషభ మ

య

య  (𝑛 − 2)(2𝑛 − 1),    𝑚 =  𝑏 

Therefore hv-torsion tensor becomes 
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 𝐶 =  
మ

ଶ ఈ భ
  ൫𝑏 ℎ +  𝑏 ℎ + 𝑏 ℎ൯ + 

భ
(మషయ)/

  మ
మ

మ  (𝑛 − 1) (2𝑛 − 1) 𝑏  𝑏 𝑏 ൨ (4.9) 

Therefore (3.4), (3.9), (3.12), (4.1), (4.5) and (4.9) gives 

 𝑀ఈఉ =  
మ

ଶ ఈ భ
 ඨ

మ భ
మ మ

భ

మ
   ൣభ

మ మ ା(ଵି) మ
మమ൧

       ℎఈఉ  , 𝑀ఈ = 0              (4.10) 

Hence from (3.14) it follows that 𝐻ఈఉ is symmetric.  

Theorem 4.2: The second fundamental tensor v-tensor of 𝑭𝒏ି𝟏(𝒄),  is given by (4.10) and the 
second fundamental h-tensor 𝑯𝜶𝜷 is symmetric. 

Next from (4.1) we get 𝑏|ఉ 𝑋 ఈ
 +  𝑏 𝑋 ఈ|ఉ

 = 0  therefore from (3.13) and the fact that 

𝑏|ఉ =  𝑏| 𝑋ఉ


+  𝑏| 𝑁 𝐻ఉ  [6]  we get 

    

 𝑏|  𝑋ఈ
  𝑋ఉ


+ 𝑏| 𝑋ఈ

  𝑁 𝐻ఉ + 𝐻ఈఉ 𝑏 𝑁
 = 0              (4.11) 

Since 𝑏| =  −𝑏 𝐶
  from (3.12) , (4.5) and (4.10) we get  

 𝑏|  𝑋ఈ
  𝑁 = −ඨ

మ భ
మ మ

భ

మ
   ൣభ

మ మ ା(ଵି) మ
మమ൧

       𝑀ఈ = 0 

Thus (4.11) gives  

 ඨ
మ భ

మ మ

భ

మ
   ൣభ

మ మ ା(ଵି) మ
మమ൧

    𝐻ఈఉ +  𝑏| 𝑋ఈ
  𝑋ఉ


= 0                                       (4.12) 

   

It is noted that 𝑏|  is symmetric. Furthermore contracting (4.12) with 𝑣ఉ and 𝑣ఈ respectively and 
using (3.1), (3.15) we get,  

 ඨ
మ భ

మ మ

భ

మ
   ൣభ

మ మ ା(ଵି) మ
మమ൧

     𝐻ఈ +  𝑏|  𝑋ఈ 
 𝑦  = 0 

 ඨ
మ భ

మ మ

భ

మ
   ൣభ

మ మ ା(ଵି) మ
మమ൧

    𝐻 +  𝑏|   𝑦 𝑦 = 0             (4.13)  

In view of Lemmas (3.1) and (3.2), the hypersurface 𝐹ିଵ(𝑐)   is a hyperplane of the first kind if only 
if 𝐻 = 0. 

Thus from (4.13) it follows that 𝐹ିଵ(𝑐)   is the hyperplane of first kind if and only if  

𝑏|   𝑦 𝑦 = 0. This 𝑏 being covariant derivative with respect to Cartan’s connection C Γ of 𝐹, it 
may depend on 𝑦. On the other hand ∇ 𝑏 = 𝑏 is the covariant derivative with respect to the 
Riemannian connection   ൛𝑗          

     ൟ constructed from 𝑎(𝑥), therefore 𝑏 does not depend on 𝑦. We shall 
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consider the difference 𝑏| − 𝑏 in the following. The difference tensor 𝐷 
 = Γ 

 − ൛𝑗           
      ൟ  is given 

by (2.13), since 𝑏   is a gradient vector, from (2.12) we have  

 𝐸 =  𝑏 ,  𝐹 = 0,   𝐹 
 = 0 

Thus (2.13) reduces to  

𝐷 
 = 𝐵 𝑏 + 𝐵 

 𝑏 + 𝐵 
  𝑏 − 𝑏 𝑔 𝐵 − 𝐶 

  𝐴 
 − 𝐶 

  𝐴 
 + 𝐶 𝐴 ௦

𝑔௦ 

  +𝜆௦ൣ𝐶 
  𝐶 ௦

 +  𝐶 
  𝐶 ௦

 − 𝐶 
  𝐶 ௦

 ൧            (4.14) 
  

But in view of (4.3) and (4.4) the expression (2.14) reduce to  

 𝐵 =  
భ

మ(భష)/ 
మ

మ (ଶି)

మ  𝑏  + ൬
భ

(మష)/
 మ ఈ

షభ


൰ 𝑦  , 

  

𝐵 =  
( ଵି ) మ

మ 

ൣభ
మ మା(ଵି) మ

మ మ ൧
𝑏 +

భ మ  

ఈ൛భ
మ మା(ଵି) మ

మ మൟ
𝑦   

  

 𝐵 =
మ

ଶఈభ
 ൫𝑎 − 𝛼ିଶ 𝑦 𝑦൯ 

 

𝐵 
 =

మ

ଶఈభ
 ൫𝛿

  − 𝛼ିଶ  𝑦  𝑦൯ −
 మ

య( ଵି )

ଶఈభ൛భ
మ మା(ଵି) మ

మ మ ൟ
  𝑏  𝑏 −

మ
మ  

ଶఈమ൛భ
మ మା(ଵି) మ

మ మൟ
 𝑏  𝑦         

       

(4.15) 

 𝐴 
 = 𝐵 

𝑏 + 𝐵𝑏  ,  𝜆 = 𝐵𝑏 

By the virtue of (4.1), we have 𝐵 
 = 0,  𝐵 = 0      which give  𝐴 

 = 𝐵𝑏 , therefore we 
have 

 𝐷 
 = 𝐵 𝑏 + 𝐵 

  𝑏 − 𝐵 𝐶 
  𝑏               (4.16) 

 𝐷 
 = 𝐵 𝑏 = 

( ଵି )  మ
మ

൛భ
మ మା(ଵି) మ

మ మ ൟ
  𝑏 + 

భ మ  

ఈ൛భ
మ మା(ଵି) మ

మ మ ൟ
 𝑦 ൨ 𝑏         (4.17) 

Thus paying attention to (4.1) along 𝐹ିଵ(𝑐), we finally get    

𝑏 𝐷
 =

( ଵି )  మ
మ మ

൛భ
మ మା(ଵି) మ

మ మ ൟ
 𝑏 + 

భ మ  

ଶఈ൛భ
మ మା(ଵି) మ

మ మ ൟ
 𝑏 𝑏 −

( ଵି ) మ
మ 

൛భ
మ మା(ଵି) మ

మ మ ൟ
 𝐶 

   𝑏  𝑏  

                  (4.18) 

 𝑏 𝐷
 =

( ଵି ) మ
మ మ

൛భ
మ మା(ଵି) మ

మ మ ൟ
 𝑏               (4.19) 

From (3.12), (4.5), (4.6) and (4.10) it follows that  

𝑏 𝑏 𝐶
  𝑋ఈ


=  𝑏ଶ 𝑀ఈ = 0  

 

Therefore the relation 
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 𝑏/ = 𝑏 −  𝑏 𝐷
            and    equation (4.1), (4.18), (4.19) give 

 𝑏/  𝑋ఈ
  𝑦 =  𝑏 𝑋ఈ

 − 𝑏 𝐷
  𝑋ఈ

 =   
 భ

మ మ

 ൣభ
మ మ ା(ଵି) మ

మమ൧
 𝑏 𝑋ఈ

  

 𝑏/ 𝑦 𝑦 = 𝑏 −  𝑏  𝐷
 =   

 భ
మ మ

 ൣభ
మ మ ା(ଵି) మ

మమ൧
𝑏 

Consequently (4.13) may be written as  

 √𝑏ଶ 𝐻ఈ + 𝑐ଵ 𝑛 ඨ
 భ

మ/
 

ൣభ
మ మ ା(ଵି) మ

మమ൧
  𝑏 𝑋ఈ

 = 0 

 √𝑏ଶ 𝐻 + 𝑐ଵ 𝑛 ඨ
 భ

మ/
 

 ൣభ
మ మ ା(ଵି) మ

మమ൧
  𝑏 = 0             (4.20) 

Thus the condition 𝐻 = 0 is equivalent to 𝑏 = 0, where 𝑏 does not depend on 
𝑦 . Since 𝑦 is to satisfy (4.1) the condition is written as  

 𝑏 𝑦 𝑦 = (𝑏  𝑦 )(𝑑 𝑦 )   for some 𝑑 (𝑥) so that we have  

 2 𝑏 =  𝑏 𝑑 + 𝑏 𝑑              (4.21) 

From (4.1) and (4.2) it follows that 

 𝑏 = 0,   𝑏 𝑋ఈ
  𝑋ఉ


= 0,   𝑏 𝑋  𝑦 = 0.  

Hence (4.20) gives 𝐻ఈ = 0. Again from (4.1), (4.21) and (4.15) we get  

 𝑏 𝑏 =
ௗబ మ

ଶ
   ,  𝜆 = 0, 𝐴

  𝑋ఉ


= 0, and  𝐵  𝑋ఈ
  𝑋ఉ


=

 మ

ଶఈభ
ℎఈఉ .  

Thus (3.9), (4.4), (4.5), (4.6), (4.10) and  (4.4) give  

 𝑏  𝐷
  𝑋ఈ

  𝑋ఉ


= −  
య భ

య మ మ ௗబ

ସఈభ
మ/

 ൛భ
మ మା(ଵି)మ

మ మൟ
మ ℎఈఉ     

Therefore the equation (4.12) reduces to   

 ඨ
మ భ

మ మ

భ
మ/

 
    𝐻ఈఉ + 

య భ
య మ మ ௗబ

ସఈ భ
మ/

  మ
 ℎఈఉ = 0              (4.22) 

where 

 𝐾 = {𝐶ଵ
ଶ 𝑛ଶ + (1 − 𝑛)𝐶ଶ

ଶ 𝑏ଶ} 

Hence the hypersurface 𝐹ିଵ(𝑐) is umbilic. 

Theorem 4.3 : The necessary and sufficient condition for 𝑭𝒏ି𝟏(𝒄) to be hyperplane of the first 
kind is (4.21) and in this case the second fundamental tensor of 𝑭𝒏ି𝟏(𝒄)   is proportional to its 
angular metric tensor.  

In view of Lemma (3.3) 𝐹ିଵ(𝑐) is a hyperplane of second kind if and only if 
𝐻ఈ = 0 and 𝐻ఈఉ = 0 thus from (4.22) we 𝑑 = 𝑑(𝑥) 𝑦 = 0, therefore there exist a function 𝐸(𝑥) 
such that  
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 𝑑(𝑥) = 𝐸(𝑥) 𝑏(𝑥)  thus (4.21) gives  

𝑏 = 𝐸 𝑏 𝑏 .            (4.23)  

 

Theorem 4.4 : The necessary and sufficient condition for 𝑭𝒏ି𝟏(𝒄)  to be a hyperplane of the 
second kind is (4.23). 

Finally (4.10) and Lemma (3.4) show that 𝐹ିଵ(𝑐) does not become a hyperplane of the third kind. 

Theorem 4.5 : The hypersurface 𝑭𝒏ି𝟏(𝒄)   is not a hyperplane of the third kind  
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